Icosahedron

## Motivations:

- Lobatschewsky: "There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world."
- Plato's cosmology
- Realization of a permutation group
- Poincare's theorem and conjecture


## Definitions

- Regular polygons: equiangular \& equilateral
- Regular polyhedron: faces are congruent regular polygons which are assembled in the same way around each vertex
- Icosahedron:
- 12 vertices, 30 edges, 20 faces
- Face: equilateral triangles


## 5 regular polyhedrons:



- Theaetetus: There are not more than five regular solids (proposition 18 book XIII)


## Realization of the icosahedrons:

- Boron: $\mathrm{B}_{12}$ Molecule whose 12 atoms are arranged like the vertices of an icosahedron.

- Virus that causes de measles looks much like the icosahedron itself.


## Plato's Cosmology



Elements and regular solids

## Construction:

- Proposition 16: To construct an icosahedron and comprehend it in a sphere, like the aforesaid figures; and to prove that the square on the side of the icosahedron is the irrational straight line called minor. (Euclid's Elements Book XIII)


## Ruler and Compass construction of a Pentagon:



## How to construct an Icosahedron:



## Universality of the Icosahedron:



New vertices: center of gravity of the equilateral triangles

Dodecahedron


Octahedro
n
Tetrahedron

(New vertices: center of gravity of the squares)

## 5 Tetrahedrons:



## 5 Solides:



## Icosahedral group:



## An example:

A rotation of $120^{\circ}$ around an axe


## Representation of 3-cycles:



- The axes pass through a vertex of the yellow and a vertex of the red tetrahedron
- Yellow \& red are fixed by the permutation



## Group structure:

-3-cycles generates the alternating group $A_{5}$

- All 3-cycle is represented by a rotation of $120^{\circ}$ (positive isometry)

Proposition: The icosahedral group is isomorphic to the alternating group $\mathrm{A}_{5}$

## Poincaré's Theorem:

There is a compact 3-manifold having the homology groups $\mathrm{S}^{3}$ but which is not simply connected.


Bredon Glen E. Topology and Geometry, Springer-Verlag, 1993

## Poincaré's conjecture:

Every simply connected closed 3-manifold without boundary is homeomorphic to a 3sphere ( $S^{3}$ ).

LADER Olivier

Pictures created with POV-Ray


